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LIQUID CRYSTALS, 1992, VOL. 12, No. 3, 449475 

Magnetic field induced bistability in nematics and cholesterics: 
general deformations 

by U. D. KIN1 
Raman Research Institute, Bangalore-560080, India 

(Received 2 August 1991; accepted 28 January 1992) 

The continuum theory is used for studying magnetic field (H) induced 
orientational bistability of the director field (n) of a nematic with positive 
diamagnetic susceptibility anisotropy (x,) the nematic being confined between two 
plane parallel plates. The rigid anchoring hypothesis is utilized for investigating the 
effect of variation of magnetic tilt on the nature of change of director deformation 
described by two distortion angles. Such general deformations can result, for 
instance, when H is slowly rotated in a plane whose normal does not coincide with 
the normal to the sample planes. The bistability width wb (the range of magnetic tilt 
angle over which two different equilibrium configurations can exist) depends upon 
various parameters such as the elastic ratios, the angle of inclination of n at the 
boundaries and the twist in the ground state. In particular, the nature of change of 
distortion exhibits certain new features when n is pretilted at the sample boundaries. 
Scaling analysis indicates that wb should be independent of the sample thickness at a 
given reduced field. Linear time dependent perturbation analysis shows that where 
bistability is associated with discontinuous orientational change, the static 
deformation is susceptible to instability near the edges of the bistable region. Scaling 
analysis of the general dynamical equations indicates that even at the same reduced 
field we cannot rule out a strong dependence of the time of transition between 
deformation states on sample thickness. When the nematic has x,<O, a threshold 
magnetic tilt may exist separating two different types of distortion; this is indicated 
by the time independent perturbation analysis. The possible effects of an additional 
electric field are briefly discussed. In the light of recent experimental evidence it 
seems interesting to generalize the rotating field (or sample) experiments discussed 
in an earlier paper. 

1. Introduction 
Various static and dynamic effects resulting from the application of magnetic (H) 

and electric (E) fields on nematic and cholesteric liquid crystals have been satisfactorily 
explained by the continuum theory [l-81 which assigns a non-polar unit director 
vector field n to describe the preferred direction of molecular orientation. Owing to the 
anisotropic susceptibilities of these materials, E or H can produce torques which tend 
to change n. Due to the anchoring effects of the sample boundaries the field induced 
orienting torques give rise to spatial gradients of n which, in turn, produce curvature 
elastic restoring torques. Under the combined action of these torques the sample 
attains an equilibrium configuration corresponding to some total free energy. A change 
in the external field causes the fluid to reach a different equilibrium state with a different 
free energy. The difference in free energy is dissipated by transient viscous effects which 
result from the time rate of change of n as the sample goes over from one equilibrium 
configuration to another. Many interesting viscoelastic effects arise out of the 
anisotropic couplings between n and the transient flow (see, for instance, [9,10]). 
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450 U. D. Kini 

When H is applied along the uniform orientation direction (no) of a nematic sample 
with za > 0, H acts as a stabilizing field. When H is impressed at some arbitrary angle 
with respect to no, a monodomain homogeneous deformation eventually sets in; such a 
distortion is uniform in the sample plane but varies only along the sample normal. 
When H is applied normal to no a deformation sets in only when H > H , ,  the 
Freedericksz threshold; above the threshold homogeneous distortions of opposite 
parity can form, separated by domain walls. In the light of these facts it should be 
interesting to find out how the deformation changes when H is slowly rotated away 
from no or -no, with the axis of rotation being normal to no. This problem can be 
treated under statics by neglecting transient dissipative processes which arise every 
time the magnetic angle (say a) is changed. 

This was first attempted, theoretically and experimentally, by Onnagawa and 
Miyashita [ll]. Using capacitance measurements they showed that when H < H F ,  the 
distortion changes continuously with a without exhibiting bistability (we shall call this 
type A behaviour) while, when H > H,, the deformation exhibits bistability and 
changes discontinuously when a exceeds a critical value (type B behaviour) resulting in 
hysterisis for reversal of the direction of change of a. Subsequently, Motooka and 
Fukuhara [12] extended the theoretical analysis of [ I l l  to show that there can exist 
two stable configurations with different free energy over certain ranges of a when H is 
sufficiently high. In this case it is possible to expect type B behaviour. 

Recently, Karn and Shen [13] studied H induced bistability in a homeotropically 
anchored nematic (n anchored normal to the sample planes). Using optical observ- 
ations they studied the variation of bistability width wb as a function of H to obtain 
results in qualitative agreement with those of [ 11,121. They also measured the time rate 
of change of deformation near the edges of the bistable region and interpreted their 
results using the continuum theory to obtain good quantitative agreement with the 
measured time of transition zR- 

In a recent attempt [ 141 bistability has been studied by generalizing the previous 
theoretical work to include different ground states and suitable magnetic planes. 
Bistability is found to occur even in situations where a Freedericksz threshold cannot 
be defined. Director anchoring strengths at the boundaries [15] as well as an additional 
E can greatly influence w,,. For rigid anchoring, however, scaling analysis indicates that 
Wb should depend only on the reduced field (H/HF) while zR should strongly depend on 
the sample thickness. Linear perturbation analysis shows that the static type B solution 
has a propensity towards instability near the edges of the bistable region. Considering 
the variety of results already obtained (see, for example, [16-20]) it seems meaningful to 
generalize the static case to include dynamic effects induced by a uniformly rotating H 
or sample. 

All the above efforts have considered configurations with n described by a single 
distortion angle and H by a single angle of tilt. As n is a unit vector it can, in general 
[21], be specified by two angles. It should be instructive to find out how wb is affected 
when n and H are both described by two degrees of freedom each. In such cases the 
dynamics will be more general with velocity gradients being invariably coupled to n. It 
should also be instructive to find out how scaling and perturbation analyses are likely 
to be affected. The case of weak anchoring should apply more generally as both 
anchoring strengths may enter the picture. If the material is a cholesteric then the 
amount of intrinsic twist may also affect the occurrence of bistability. 

With this motivation the governing equations are derived and the boundary 
conditions specified in 2. Section 3 contains results on bistability based on the static 
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Orientational bistability in nematics 45 1 

part of the theory. In Q 4 the dynamical equations are set up and solved in the linear limit 
to shed some light on the stability of the static solution against imposed perturbations. 
Section 5 concludes the discussion. 

2. Governing equations, boundary conditions and method of solution 
It is convenient to adopt the procedure of [21] with some variation. Consider a 

cholesteric confined between plane parallel plates z = & h (sample thickness = 2 h) at 
which the easy directions of anchoring are given by 

d , = (cos 8, cos 4 +, cos 8, sin 4 +, sin 8,) (2.1) 

H =(HC,C,, HC,S,, HS,); Ca = cos a; S ,  =sin p (2.2) 

in rectangular Cartesian coordinates. A field 

is impressed on the sample. The angles tl and fl can be referred to as the magnetic polar 
and azimuthal angles, respectively. The resulting homogeneously deformed configur- 
ation is taken to be 

n = (CeC,, C$,, So); 8 = 8(z); 4 = 4(z). (2.3) 

Using (2.2) and (2.3), the deformation dependent part of the total free energy density 

(2.4) I wv =fi(@4, + C{f i ( e )e~z+f3 (e )4~z } /21  +f4(e,4); 
fl(8) = - k2C,2; f2(8) = K ,  C; + K3S,2; f3(8)  = K 2 C i  + K3SiCi ;  

f4(0,4)= -~~x ,H2CCaC,cos (B-~)+SaS ,12 /2 ,  
where K,, K,,  K ,  are the splay, twist and bend elastic constants, respectively; 
k2 = 2nK2/P,;P, is the equilibrium pitch of the cholesteric; 4, = dcj/dz, etc. For a 
nematic, k2 =O. The surface free energy density is [l5] 

W,(Z = k h)= [Be+ sin2 (8 - 8,) + B,, sin2 (4 - 4 ,)I/& (2.5) 

where Be,, B,+ are the splay and twist anchoring strengths, respectively, at z = & h. 
Minimizing the free energy the following governing equations and boundary 
conditions result: 

re=f2(e)e, + C(df2/d~)~~z-(df~/d~)4~2I/2-(af4/ae)-(df1/de)4,z=o; ] (2.6) r,=f,(e)4,zz+(dfl/de)8, z +(df3/de)8,,4,z-(af4/a4)=o; 

(2.7) 1 [f2(0)0, .&Bo, sin(e-8,)cos(8-8,)](~= fh)=O;  

[ f l ( e ) + f 3 ( e ) 4 , z * B , +  s i n ( ~ - ~ ~ ) c o s ( ~ - ~ , ) l ( z =  kh)='' 
When the anchoring at the walls is not rigid there is restriction, shown by these 
expressions mainly on the spatial derivatives 8 and 4 at the sample boundaries; the 
orientation of n can deviate from the easy direction (see equation (2.1)). Interestingly, in 
the present case both splay and twist anchoring strengths enter the picture while only 
one of them figures in the situations [14] where n is described by only one angle. If the 
anchoring is rigid then 

e(z= +h)=e,; 4(z= + h ) = 4 , .  (2.8) 

Except when the easy axes (see equation (2.1)) and the magnetic tilt (see equation 
(2.2)) assume special values, the equations (2.6) are always coupled. Thus, in general, 
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3.1. 4* =O; t)+ =O; k,=O 
The ground state is homogeneously aligned along the x axis. As the boundary 

conditions are symmetric, e(z),r$(z) will also be symmetric and assume extremum values 
Om, &, respectively, at the sample centre. In this case additional symmetry transform- 
ations also result. For example, 

a-m-a; e+-e (3.3) 

leaves equations (2.6) and (2.8) unchanged. In addition it is seen that f l  =(n/2)  f fll are 
equivalent provided that 

4+-& a+a-a. (3.4) 

Osasn; 0 5 p 5 3 n / 2 .  (3.5) 

This means that we can fix the following ranges for the variation of a: 

It is next necessary to fix a characteristic field to measure H .  When f l  = 0, a variation 
of a results in H being rotated in the xz plane. Then +(z)=O. It is natural to choose 
H F  = (n /2  h) (KI/poxa)”2, the splay Freedericksz threshold, as a measure of H .  When f l  
= 4 2  and M: is varied, H rotates in the yz plane. This is the oblique field configuration 
[6 ]  in which e(z) and 4(z) appear above a threshold 

which is itself a function of a. It seems convenient, therefore, to use H ,  as the 
characteristic field. 

Figure 1 shows plots of 8, and 4, as functions of the magnetic polar angle a for 
different values of the magnetic azimuthal angle fl. Figure 2 depicts the variation of the 
total free energy F versus a for a few representative cases. The nature of variation of 8, 
and 9, with a is found to depend on the reduced field R = H/HF and fl. For a given f l ,& 
varies in the range - f l  < 4, < fl. For any value of fl, 6, crosses zero as a passes through 
n/2. This is clearly because H will be directed along the z axis when a = 7112 regardless of 
the value of fl; there can then be only a O(z) distortion and &z) must vanish throughout 
the sample. It may be noted that the variations of 8, and 4, are in conformity with 
equation (3.3). 

When /?is small (=001; see figures 1 (a) and (b)), H rotates close to the xz  plane. The 
dominant distortion is 8(z), +m being very small. When H is low enough, the 
deformation is type A (curves 1 and 2). When R > 1, however, one finds the type B 
variation (curves 3) with bistability (dashed lines are used to mark bistable regions). A 
discontinuous transition at the edge of the bistable region from a higher energy state on 
one branch to the corresponding lower energy state on the other branch cannot be 
ruled out. The nature of variation of 8, is similar to that studied in earlier work [l l-141 
for the single angle deformations. 

When /l is enhanced (= 0.78; see figures 1 (c) and (d) )  the curves are similar to those 
of figures 1 (a) and (b), except that the bistability width w, for R >  1 is considerably 
greater than that at f l  = 0.01. When f l  is further augmented (= 1-17; see figures 1 (e )  and 
0) the nature of distortion change becomes somewhat different from the earlier cases. 
At low fields ( R  5 1) we find the type A variation. At a higher field ( R  = 1.5; curves 3) the 
deformation changes continuously over the entire .n range of a, exhibiting bistability; 
this is a new kind of variation which we shall call type C. In a small range of 
intermediate field strengths, 1.0 < R < 1.4, we again find the type B behaviour. 
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454 U. D. Kini 

0.0 ci 3.0 

Figure 1. Variation of Om and 4m as functions of the magnetic polar angle CI for different values 
of the reduced field R=H/H, and magnetic azimuthal angle b. H, is the splay 
Freedericksz threshold. The ground state is homogeneously oriented along x; ( 6 ,  = 6 ,  = 0). 
The director is rigidly anchored at the boundaries. Under the action of H from equation 
(2.2), n gets distorted such that O(z), 4(z) are symmetric with respect to the sample centre 
z =O; Om = O(z =0) and 4, = 4 ( z  = 0) are the maxima of the deformation angles. Material 
parameters are as in equation (2.9). p=(a), (b)  0.01 (c), ( d )  0-78 (e), (f) 1.17 rad. Curves have 
been drawn for R = ( l )  0 5  (2) 1.0 (3) 1.5 in (aHd) .  R=( l )  1.0 (2) 1.2 (3) 1.5 in (e) and ( f ) .  
Dashed lines represent regions of bistability. Depending upon the values of p and R, we 
can find behaviour of type A, B or C; when n and H are confined to the same plane [ll-141 
it is possible to find only deformation variation oftypes A and B. A qualitative explanation 
in terms of energetics can be found in $3.1. 

The above results can be described qualitatively as follows. When R is small enough 
the dominance of elastic torque over the magnetic torque ensures that the distortion 
does not grow beyond a certain limit. As there can be no deformation at a=n/2 for 
R S 1 (or, equivalently, for H S HF), both 8, and 4, must pass through zero as a crosses 
4 2 ;  this must hold for any value of f i . When R >  1 the 8(z) (splay-bend) distortion 
increases as a is varied from 0 or n. Because R > 1,6, does not become zero as a crosses 
1112. When B is small the entire distortion is almost purely splay-bend and confined to 
the xz plane as xa > 0. There is no scope for a twist 4(z)  to build up sufficiently to drain 
off free energy from the splay-bend component (we remember that Iq5,,,/ < band that f l  is 
small). In this case when a is varied beyond 4 2 ,  8, increases further making an 
energetically stable solution impossible when a crosses a critical angle a, (which we 
identify as the edge of the bistable region). This causes the type B distortion to be 
described by two distinct branches (0 5 a 5 a,; n - a, 5 a 5 n) having an overlapping 
region of bistability which extends symmetrically about a = n/2 over the bistability 
width w, = 2 a. - n. Any attempt to vary a beyond the edge of any one branch results in 
the configuration changing irreversibly to the corresponding low energy state on the 
other branch; such transitions have been experimentally observed [ll, 131. 

When p is sufficiently high and a close to 0 or z, the distortion is predominantly 
twist. The splay-bend component develops only as a is varied towards n/2. When R > 1 
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0.0 a 3.0 0.0 B 3.0 
-6.0 

0.0 B 3.0 

Figure 2. Variation of the total free energy F (units 10-IoJ) as a function of the magnetic tilt 
angles at different R for rigid anchoring. Compare with figures 1 and 3. In (aHd) the 
ground state is homogeneous along x (0, =O). F versus CI for /3 =(a) 0.01 (b)  1.17. R = (1) 0.5 
(2) 1.0(3) 15in(a)R=(1)0.5(2) 1.2(3) 15in(b)Fversus/3forcr=(c)O.01 (d)  1.36. R=(1)05 
(2) 1.0 (3) 1.5 in (c) and (d). It is instructive to compare (b) and ( d )  with (a) and (c), 
respectively. For type C variation of distortion, F near the centre of the magnetic tilt range 
is generally lower than F for type B variation (see 0 3.1). (e) and ( f )  ground state is tilted in 
thexzplaneat8,=0, withthexaxis.(e)~,=0~78;/3=1~17.Fversusaat R=(1)05(2) 1.0 
(3) 1.5. ( f )  8, =039; a=O.78. F versus /3 at R =(1)05 (2) 1.0(3) 1.5. The strong asymmetry in 
the variation of F with respect to the centre of the magnetic tilt range should be noted. This 
is due to the different ways in which splay-bend couples with twist when the magnetic tilt is 
varied from the opposite ends of its range for non-zero director pretilt at the sample 
boundaries (see 0 3.3). 

and a reaches n/2, lO,l is maximum and &=O. Suppose H is sufficiently high. Then 
when a is varied beyond 4 2  in the same direction, H tends to pull n out of the xz plane 
via a twist. This means an increase in 1&,1 which can only be at the expense of 16J; as the 
twist component in the deformation gets augmented, the splay-bend component 
diminishes. Thus when R is sufficiently high the deformation change is of type C-a 
continuous variation along two different paths over the entire .n range when a is varied 
from the two ends of its range. When this behaviour is contrasted with the type A 
variation expected for low R (no bistability but continuous variation of deformation) it 
is immediately clear that when pis high enough the nature of distortion change must be 
of type B over some intermediate range of R. 

Some of these points become clear when we compare the curves of total free energy 
F versus a for different p and R (see figures 2 (a) and (b)). It is seen that for p = 1.17, F 
remains lower than that for p=OOl near the centre of the a range. It should also be 
noted that F for R = 1 varies rather sharply near a = n/2. We can expect, therefore, that 
at R= 1, the deformation may show a small jump (without exhibiting a noticeable 
amount of w,) as a crosses 4 2 .  This possibility seems feasible when we examine the 
stability of the static homogeneous deformation against time dependent perturbations 
(see $4). 
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With this background it is relatively straightforward to appreciate the nature of 
variation of distortion when the magnetic polar angle a is held constant and the 
azimuthal angle b is varied. In this case H moves on the surface of a cone having an 
angle of 2a. Remembering that the ground state is homogeneously oriented, the 
following observations can be made. 

From equations (3.1) and (3.2) the relevant range for /? variation is Os/?sn at a 
given a. In addition, 

/?+n-b; 4 + - 4 ;  e+-e (3.7) 
is a symmetry operation for equation (2.6). Also, a = ( n / 2 )  f al are equivalent if 8-t - 6. 
Hence it is sufficient to choose a values in the range 0 S a s  n/2. 

When a = 0, H lies in the xy plane as /? is varied and so does n. The deformation is 
pure twist and for f i=  4 2 ,  we can define the twist Freedericksz threshold H ,  = (n/2 h) 
( K , / ~ J , ) ’ ’ ~ ;  H ,  can be used for measuring H .  When a #O, however, the distortion is 
splay-bend close to b=O or n; for intermediate values of /?, the deformation is a 
combination of splay, twist and bend, with the twist component becoming important 
near the centre of the fl range. For a #O and /? = n/2 ,  we can define the characteristic 
field H,(a) from equation (3.6) which is a function of a. For uniformity of description 
the splay Freedericksz threshold H ,  is again used to form the reduced field. 

Figure 3 shows the variations of 8, and &,,,as functions of b for different values of a. 
Figures 2 (c) and (4 depict the corresponding variations of the total free energy F with 
/?. The qualitative interpretation of these diagrams follows closely that presented for 
figure 1. For instance, &,<a is the range of 8,. When a is close to zero and the 
deformation practically confined to the xy plane (see figures 3 (a) and (b)) one finds type 
A behaviour for the low field and type B for high fields. As before, the bistability width 

O.O1 F-:. 3 

- he--- 

-0.01 
0.0 B 3.0 0.0 B 3.0 0.0 B 3.0 

Figure 3. Plots of 0, and 4, versus fl  for different R and a. The ground state is homogeneous 
along the x axis and is rigidly anchored at the boundaries. a=(a), (b) 0.01 (c), ( d )  1.17 (e), 
(f) 1.36rad. Curves have been drawn for R=( l )  0 5  (2) 1.0 (3) 1.5. Depending upon the 
values of c1 and R we get distortion variations of type A, B or C in contrast to the single 
angle description [11-141 where only type A or B is met (see $3.1.). 
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wB increases with R. When a is sufficiently high, n can escape out of the xy plane via a 
splay-bend distortion (see figures 3 (c) and (4); wB increases for the higher field ( R  = 1.5) 
but diminishes for the lower one (R = 1.0). At still higher a, we observe type C behaviour 
for R= 1.5 and type A for the lower fields. There exists an intermediate range of R 
(results have not been shown) over which we find type B variation. 

3.2. 4, = +40; e* =o 
The ground state is twisted with total twist = 2 $,, without pretilt at the boundaries. 

Results for this case are presented briefly. If the material is a nematic then k,  = 0 and 
24,<n/2. The ground state is described by O(z)=O and an antisymmetric twist 
4(z)  = (4,/h)z. Because of this reason the deformation for general orientations of H will 
not be symmetric. When a = n/2 (H is along z,  hence fl is not relevant) a symmetric 8(z) 
and an antisymmetric 4(z) can be expected when H > H, with [21] 

H-r = C{K1(n2/4h2)+(K3 -2Kd (#3h2))/P0,xa11’2. (3.8) 
When &+o, HT-+H,. Hence it seems reasonable to employ H ,  for defining R. 

For b = 0 and arbitrary values of a we can expect a deformation with 8 symmetric 
and 4 antisymmetric. For general values of fl, O(z) and 4(z)  will be asymmetric when a 
takes arbitrary values. On the basis of what has been discussed here it is possible to 
reach another conclusion. Suppose at a sufficiently elevated H ,  a is varied with b ZO. To 
start with, the deformation will be asymmetric. When a reaches n/2,0(z) should become 
symmetric and 4(z)  antisymmetric; when a is varied further, the distortion should again 
become asymmetric. 

Depending upon H and 4,, two types of asymmetric solutions are possible for 4(z).  
In the first kind, which we shall call dc $(z) varies monotonically from 4- at z = - h to 
9,  at z = + h. In the second type, referred to as &,, 4(z )  becomes an extremum at some 
intermediate point z,: Jz,J < h. As 8 ,  = 0, 8(z) is always of the 8, type, viz. 0(z) always 
reaches an extremum at some point between the sample planes. It is found that 4(z )  
conforms to the db or the 8, type of variation over certain ranges of magnetic tilt 
depending upon the values of R and 4,. It is therefore, found convenient to use 

= &z = 0) and 8, = O(z = 0) as measures of the deformations. 
Plots of Oc and & as functions of a (for different f i )  and of (for various a) can be 

drawn at given values of R and 4,. At a given 4, the plots are found to be qualitatively 
similar to those of 8, and @,,, of figures 1 and 3 and hence they have not been included. 
As in figures 1 and 3, the plots of 0, and 4, are symmetric with respect to the mid-point 
of the range of magnetic tilt (a or f l )  and this in spite of O(z) and $(z) being themselves 
generally asymmetric with respect to z=O. The relevance of this observation will 
become clear in the next section. 

The table summarizes quantitatively the different aspects of the variation of the 
distortion for three values of twist. Relatively high values of R have been chosen so that 
type B or type C variations are produced. Both a and variations have been 
represented. The interpretation of the results is not straightforward, but the following 
points may be noted. 

When a is sufficiently small, wB decreases as 4, is enhanced; interestingly, this trend 
gets reversed when a is high enough (= 1.1 7). For a = 1-36, R = 1.5, ws = n for all three 
values of twist (type C behaviour). 

The a variation at a given /? does not show the same regularity as the f i  variation 
discussed previously. It is found, however, that w, generally increases with f l  for a given 
ground state twist. It also appears that w, decreases in general with increasing 40. 
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Type B variation of deformation is considered except (t) which indicates type C behaviour. CL and 
/3 are, respectively, the magnetic polar and azimuthal angles. 2 4o is the ground state twist. 
All angles are expressed in radian. Material constants as in equation (2.9). R = H / H ,  is the 
reduced field where If, is the Freedericksz threshold from equation (3.8). 

I. Bistability width w,  for a variation 
R = 1.75. Different values of and q50 have been chosen. 

4 0  p-+001 0.19 039 0.78 

0.00 1.04 1.08 1.20 .(t) 
039 0.64 0.70 1.30 1.90 
0.78 0.3 1 0.36 0.4 1 074 

11. Bistability width wg for f i  variation 
R = 1.5. Different values of u and do have been chosen. 

40 u-to.01 0.39 0.78 1.17 

0.00 1.18 1.19 1.28 2.03 
0.39 094 0.98 1.18 2.22 
0.78 0.46 054 0.90 2.80 

111. Effect of variation of elastic constant on bistability width 
4o = 039. R = 1.5. At a time the values of two elastic constants 
are held fixed as in equation (2.9) and the value of the third 
(in units of 10-”N) is changed as shown. 

K = 0.925 
= 1.850 
= 3.700 

K 2  = 0.65 
= 1.30 
= 2.60 

K ,  = 1.01 
= 2.02 
= 4.04 

fi  = 4 4  

w,=0.58 
= 1.06 
= 4t) 
= .(t) 
= 1.06 
= 0.84 

= 1.63 
= 1.06 
= 068 

u = 4 4  

wg = 0.42 
= 1.18 
= 2.39 

= 2.00 
= 1.18 
= 0.54 

= 1.66 
= 1.18 
= 0.98 

These studies can be extended to long pitch cholesterics (pitch - sample thickness). 
While it is rather difficult to give a detailed description in the present limited format, it 
may not be out of place to indicate certain interesting ramifications that can be 
expected. It is convenient to assume that the director is rigidly anchored at the two 
boundaries such that the ground state retains the equilibrium pitch (P,). It is then 
natural to employ the threshold [2l]which can be defined when H is directed along 
the z axis: 

H ,  = c((.2/4)& + ~ 3 4 0 2 1 / P 0 X a ~ 2 1 ” 2 .  

The reduced field R = H/H,. For H > H ,  we expect, as before, a distortion with O(z) 
symmetric and 4 ( z )  antisymmetric. The expression for H ,  is meaningful only when Po is 
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large enough compared to the sample thickness or, equivalently, when 4, is sufficiently 
small. When 4, exceeds a critical value Cb0 = ( ~ / 2 )  [ K Z K 3 / ( K 3  - K , )  ( K ,  + 2 K2)I1j2, the 
homogeneous deformation may not occur at a = n/2  because of being energetically 
infeasible (see 0 5). For the material parameters from equation (2.9), 4o = 1.37 rad. It 
should be interesting to compare the variation of distortion with magnetic tilt for 
4, < 40 and for 40 ’ 40. 

3.3. 41t =o; e* =el 
The ground state with 0 < 8, < n/2  is uniformly tilted with respect to the x axis in the 

xz plane without any twist superposed on it. In this case, as in section 3.1, both O(z) and 
+(z) are symmetric relative to the sample centre. For the variation of a, at a given p, we 
can choose the range O1 5 a 5 8, + n; it is convenient to vary p over the range 0 5 p 2 n 
for the given a. H is measured in terms of H,. Some of the symmetries discussed in 
section 3.1 may no longer be valid. 

Suppose /3 = 0 and a, the magnetic polar angle, is varied at a given R. The distortion 
is ofthe splay-bend kind and there is no twist. A simple calculation shows that the total 
free energy F varies in a symmetric way with respect to a = 8, + 4 2 ,  the mid-point of the 
range, i.e. F(a = 8, + al) % F(a = 8, + R -  al). However, the deformations for the two 
values of a are somewhat different. It can be seen (see, for instance, figure 1 of [14]) that 
8, (a = 8, + a,)- 8, w O1 -&(a = 8, + n - al). This essentially means that when a is 
increased from CI = 8,, 8, increases above 8,; when a is diminished from a = R + 8,, 8, 
decreases below el. In the two cases the distribution of splay and bend in the 
deformation is different, but both states will have almost the same free energy provided 
that a has been varied by the same amount from the two edges of its range. It will now 
be clear that in case H is swung out of the xz plane by some angle p, the effect on the 
distortion at the two values of a will be quite different as the splay-bend will couple with 
twist in completely different ways. Hence, when p #O, the deformations O(z), 4 (z )  at a 
= 8, +a, and a = R + 8, - a, will be quite different; at these two values of a, even the 
total free energies should be different. This difference, which is negligible for B = 0, can 
be expected to increase when p is enhanced and become maximum when p = 4 2 .  
Simply put, we can think of asymmetry in the nature of change of distortion when the 
magnetic tilt is varied along opposite directions from the two ends of its range-a 
situation completely absent when the ground state is homogeneously aligned. 

Figure 4 depicts plots of 8, and 4, as functions of a for different at three R values. 
A relatively low pretilt of 8,=0*19rad has been used. Asymmetry is evident and 
becomes more pronounced as p assumes higher values. This becomes especially clear 
from the F versus a curves (see figure 2(e) )  drawn for a higher pretilt (13, =0.78). 

The plots of 8, and 4, versus @ for different CI are shown in figure 5 for a pretilt of 
8, = 0-39 rad. When the magnetic polar angle CI is small, the deformation varies in a 
symmetric way for equal variations of p from either end of its range. When a is 
sufficiently high, there again occurs a marked asymmetry like the kind presented in 
figure 4; a representative diagram of F versus /3 (see figure 2 ( f ) )  completes the 
description. 

The combined effects of director pretilt at the boundaries and an imposed twist in 
the ground state may be interesting. In this case it may be possible to consider ground 
state twists higher than 7c/2 [25] .  The ground state twist should make the deformation 
asymmetric with respect to the sample centre. The director pretilt at the boundaries 
should make asymmetric even the nature of change of distortion for magnetic tilt 
variations from either end of the range. A detailed discussion is postponed to the future. 
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-1.0 - 1  .o 
0.2 a 3.2 0.2 o! 3.2 0.2 a 3.2 

0.01 

4rn 

-0.02 

0.2 a 3.2 

Figure 4. Variations of 0, and 4, as functions of M. The ground state is uniformly oriented in 
the xz plane making angle O1 =0.19 with the x axis. The reduced field R has the same 
definition as before. Curves are drawn for R = (1) 0 5  (2) 1.0(3) 1.5. B =(a), (b) 001 (c), (d)  0.78 
(e), cf) 1.17 rad. The distortion changes by different amounts when M is increased from el or 
decreased from z + el at given R and B. This may be due to the different kinds of couplings 
between the splay-bend and twist components in the two cases (see $3.3); see also figures 5 
and 2(e). 

3.0 B 0.0 

Figure 5. Plots of @,, 4, versus B at different values of R and M. The ground state is uniformly 
tilted in the xz plane making an angle O1 = 0.39 with the x axis. Curves are drawn for R =( 1) 
0.5 (2) 1.0 (3) 1.5. a=@), (b) 0.0 (c), ( d )  0.39 (e), (f) 078. The distortion changes 
symmetrically with respect to the centre of the jl range for a =O. When M is different from 
zero, an asymmetry can be detected (see Q 3.3); see also figures 4 and 2 (f). 
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3.4. Nematic with x a < O  
To study this case the elastic constant values of equation (2.9) are used but the sign 

of xa is reversed. It is well-known that when H is imposed on a xa < O  nematic, n tends to 
align normal to H. Under the joint actions of surface anchoring and H it is possible to 
consider homogeneous deformations in this case also. Certain intricacies can, however, 
arise and to understand these it is necessary to appreciate how the distortion changes 
with magnetic tilt. Unless otherwise stated a homogeneous ground state is assumed 

For a xa < 0 nematic, the only Freedericksz direction is with H along the uniform n. 
For homogeneous alignment the twist Freedericksz threshold HZ = ( 4 2  h) 
x (K2/p01xal)1’2 is lower than the splay Freedericksz threshold Wk =(7r/2 h) (Kl / ,uo~~a~)1’2  
as K ,  < K , .  The deformation for general magnetic tilt can become a combination of 
splay, twist and bend; hence for uniformity we shall use Hk to measure H. 

Figure 6 contains the plots of 8, and 4, versus the magnetic azimuthal angle p for 
various values of a and reduced field R = H / H k .  As p = k 4 2  correspond to positions of 
vanishing magnetic torque on n,it is natural to vary f l  in the range - n / 2 ~ f l ~ n n / 2 .  
Comparison of figure 6 with figure 3 (for a xa > 0 nematic) shows that the 4, curves are 
similar but the 0, curves are not. Interestingly, the 8, curves of figure 6 are similar to 
the 4m curves of figure 1 (a variation: xa > 0 case). When a is sufficiently small and R high 
enough we find type B variation (see figures 6 (uHd)). When OL is increased (see figures 
6(e)  and (f)) we again find only type A behaviour-continuous variation of 
deformation but no bistability-for the same high field. As a is raised to still higher 
values the curves only get more rounded (these have not been presented). 

(e, =e=o). 

-1.5 B 1.5 - 
3/13 -0.9 

.5 le 1.5 - L 

.5 B 1.5 

1 * 5 b  1;;b 

$rn 

(4 \? (4 2 

-1.5 3 /  -1.2 1- -0.8 
-1.5 B 1.5 -1.5 le 1.5 -1.5 B 1.5 

with B for different values of LY and reduced 
field R = H / H k  where Hk is the splay Freedericksz threshold. Ground state is homo- 
geneous along x. Material parameters are as in equation (2.9) except that the sign of za is 
reversed. R =(1) 0 5  (2) 1.0 (3) 1.5. a=(a), (b) 001 (c), (d)  015 (e), (f) 039. Comparison with 
figure 1 (x,  > 0 case) shows that while the 4,,, curves are similar, the Om curves are not. Only 
deformation variations of types A and B can be seen as increase in CI causes a change over 
from type B to type A variation at a given R (see Q 3.4). 

Figure 6. Nematic with x, < 0. Variations of Om, 
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\A -0.5 

0.0 

#In KL O : p L  3:B 
-1.0 

-1.4 0.0 
-1.5 4 1.5 -1.5 4 1.5 -1.5 4 1.5 

Figure 7. Nematic with xa < 0. Plots of Om, 4, and F versus LY. Ground state is homogeneous 
along x. R is defined as in figure 6. R = (1) 0.5 (2) 1.0 (3) 1.5. fi  = (a), (b), (e) 0.01 (c), (d), (f) 039. 
The deformation change conforms to type A only. When fi  is small, (a), (b)  a sharp change 
can be discerned in 0, as LY crosses a certain value L Y ~  for sufficiently high R. This is 
accompanied by a steep build up of the twist component. When B=O, tlC actually 
corresponds to a threshold change over from splay-bend deformation to a splay-bend- 
twist distortion (see 0 3.4; see also figure 8). (e) shows that F varies continuously with LY even 
when fi  is small. Interestingly, F for the present case is positive (compare with the sign of F 
in figure 2 for xa>O nematic). 

Figure 7 shows the variations of Om, 4, and F as functions of the magnetic polar 
angle a for different values of f l  and R. As a= +_ n/2 are positions of zero magnetic 
torque on n, we select the range - n/2 5 a 5 71/2. For = 0.39 (see figures 7 (c) and (d)) 
there are no discontinuous changes in the deformation even at a sufficiently elevated 
field (R = 1.5); curves for still higher f l  are found to be similar in shape to those of figures 
7 (c) and ( d )  except that the extrema of @,(a) and &,(a) get scaled down. For fl=O-01, 
however, the results are more interesting. It is found that when a crosses a critical value 
lacl( < n/2), 8, changes somewhat sharply when R is high enough. Figure 7 (b) shows 
that at the same point, 4, increases sharply from a value close to zero (when R is low, 
q5m remains zero for all a). This has all the trappings of a threshold phenomenon, but the 
F versus a curve (see figure 7 (e)) does not show perceptible discontinuity at a= lac( (it is 
instructive to compare the sign of F here with that of F for za > 0, (see figure 2). Thus the 
twist appears to grow continuously at this point. 

3.4.1. Twist instability of splay-bend distortion 
To understand this qualitatively, let us consider what happens when p = 0 so that a 

variation of a rotates H in the xz plane. When a=O, H is along the Freedericksz 
direction; if H > H;, a pure twist deformation 4(z) will come into existence with n lying 
in the xy  plane. Suppose, instead, we had started with a = n/2 (H along z),then H would 
exert no torque on n, regardless of H .  If c1 is varied slightly, a splay-bend distortion can 
occur due to the increase in the magnetic torque. As the deformation and field are both 
in the xz plane we can expect the 8 distortion to get enhanced as a is varied further away 
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Orientational bistability in nematics 463 

from the z axis. For a x a < O  nematic, H tends to push n towards a plane normal to H. 
The stable deformation for a= O(when His  along the x axis)& a pure twist. Hence, once 
H is sufficiently tilted towards the x axis it is possible that H might couple with twist 
perturbations to cause n to twist out of the xz plane. An identical argument can be given 
when we start with a= -n/2 and rotate H towards the x axis. 

When p =O and $(z)  develops at a = a,, both parities of twist can grow (i.e. twists 
with 4m > 0 and 4m < 0; this becomes clear presently when we present a linear stability 
analysis) as both states will have the same free energy. It is quite possible, therefore, that 
when a = O  and a crosses a,, the distortion in the sample will break up into domains 
separated by domain walls; sufficiently far away from a wall the distortion will be 
homogeneous (8,4 being functions of z alone) with 4 having a certain parity (i.e. #,,, >O 
on one side of the wall and 4m < 0 on the other side). This degeneracy has been lifted in 
figure 7 (b) by making p slightly different from zero. It should be clear that if B were 
-001, the 4, curve would be above the a axis. 

A linear perturbation analysis is employed. The initial static deformation is 
specified by 

n=(C,,O,S,); 8=8(z); H=(HC,,O,HS,); (3.9) 

(3.10) 

(3.1 1) nrr = [cos (8 + 8”) cos 4”, sin 4”, sin (8 + 8”) cos 4”]. 
The total free energy density F“ is written down retaining terms up to the second order 
in 8”, q5“ and their derivatives. When F” is extremized with respect to the perturbations 
using equation (3.10) we obtain the following pair of torque equations and boundary 
conditions: 

1 f2(8)8,.. + [(df2/d@8;z + PoXaH2 sin (2a - 2@1/2 = 0; 
8(z= +h)=8,. 

Perturbations are now imposed such that n becomes 

(3.12) 

(3.13) 

As 4rr is associated with the much weaker elastic constant K2, it is clear that the 
uncoupled 8” mode can be ignored while considering the linear threshold [26]. 

The method of solution is as follows. Starting with a value close to 4 2 ,  a is varied 
towards zero; for each value of a, 8(z) is determined from equation (3.10) and the 
compatibility condition evaluated from equation (3.13). The condition is found to be 
satisfied at a certain ac which can be studied as a function of R = H / H $  for given 8* or 
as a function of 0, at a fixed R. 

Figure 8 (a) depicts the variation of a, with R for the homogeneous ground state; 
different material parameters have been used. For a given material, a, decreases as R is 
diminished ; uC+O as R+HZ/Hk the twist Freedericksz threshold. At a given R, a, 
increases when K ,  or K, is enhanced; H has to be rotated by a smaller angle away from 
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0.7 

0.0 I 0.1 
0.5 R 2.0 0 

I 

*+ 1.5 

0.5 

8, 

0.0 
1 

Figure 8. Plots of magnetic tilt thresholds as functions of different parameters. Nematic with 
za < 0. R is defined as in figure 6. A time independent linear perturbation analysis is used. 
( a H d )  variation of a, with R and boundary tilt of the director. The initial distortion is 
splay-bend from equations (3.9) and (3.10). a, is the critical value of CI such that when a, 
varied from n/2, crosses a,, a twist can develop over and above the splay-bend 
deformation. Material parameters are as in figures 6 and 7 for (b), (c), (d) .  (a) a, versus R for 
different material constants. The ground state is homogeneously aligned along x. The 
material constants are (in units of lO-"N); (Kl, K,,  K,)=(l) as in equation (2.9), (2) (3.7, 
1.3, 2.02), (3) (1.85, 1.3, 1.04), (4), (1.85, 1.5, 2.02). When H-+H';, the twist Freedericksz 
threshold, a,-+O. (b) a, versus O1 which is the uniform tilt ofthe ground state in the xz plane 
at R = 1.5; curves for R = 1.0,2.0 lie close to this one and hence they have not been shown. 
(c) ac versus O+ for 8-  =O; asymmetric anchoring of the director at the boundaries which 
means that the ground state has splay-bend deformation. R =(1) 1.0 (2) 1.5 (3) 2.0. ( d )  a, 
versus O+ for 0- = - O+. Reversely pretilted case. The ground state is distorted. R values as 
in (c). Curves for 8, > 4 4  may be of only academic interest [27] (see 5 3.4.1). (e)  and (f) the 
ground state is a twisted nematic with twist = 24,,. H is rotated in the xy plane. p, is the 
threshold tilt at which the initial twist deformation becomes unstable against solav-bend 
fluctuations. (e) p, versus R for 4,, = (1) 0.0 (2) 0.39 (3) 0.6. (f) pc versus 4; for R (0 1.5 (2) 
2.0 (3) 3.0 (see 53.4.2). 

the z axis before a twist distortion starts to grow. This may be due to the increased 
elastic destabilizing torques associated with 6'' from equation (3.13). On the other 
hand, ctC diminishes when K ,  is increased at fixed R. Clearly, due to the increased elastic 
resistance from the twist elastic constant, H has to be moved closer to the x axis before a 
twist can develop. 

Variation of ac with the director boundary tilt can be studied at a fixed R. Increase 
in the uniform pretilt angle of the ground state f3* = (away from the homogeneous) 
causes ac also to be augmented (see figure 8 (b)). When the pretilts at the boundaries are 
unequal (8- = O ;  8, is varied; see figure 8(c))  ac increases with 8,. In this case the 
ground state is asymmetrically deformed. A similar variation is seen (see figure 8 (d ) )  for 
the reversely pretilted case with 8 - = - 8 +. The curves of figure 8 (d) may be of only 
theoretical significance for 8, > 4 4  as the antisymmetrically distorted ground state 
may not be stable [27]. 
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3.4.2. Splay-bend instability of twist deformation 

initially confined to the xy plane so that the static distortion is given by 
In an exactly analogous way we can investigate the situation in which n and H are 

n = (C@ s,, 0); 4 = 4(4; H = ( H C p  HS,,  0); 

K 2 4 , 2 , + 3 p o ~ a H 2  sin(2P-24)=0; Cp(z= +h)=Cp,. (3.14) 

Under static fluctuations 0”, Cp“, n becomes 

n” = [cos 0” cos (4 + Cp”), cos 8” sin (Cp + Cp”), sin 0”]. (3.15) 

The decoupled linearized equation [26] along with the relevant boundary conditions 
are 

K2CpYzZ - poxaH2 cos (2/3- 24)Cp” = 0; C ~ ” ( Z  = 5 h) = 0; (3.16) 

(3.17) 

(for nematics we shall put k ,  = 0). When His sufficiently high and /3 is varied from k x/2, 
the 4” mode will form at the edges of the bistable region (j3 = &Po, say). It is , however, 
likely that the 0” mode might grow at /3= k Do before /3 reaches k /30:I/301 < < n/2. If 
this happens we can say that the static twist deformation Cp(z) undergoes an out of the 
plane instability due to the splay-bend perturbation 9“. The threshold azimuthal angle 
flC, calculated from equation (3.17), varies with reduced field R and ground state twist as 
shown in figures 8 (e) and ( f ) .  It will be seen that every Pc versus R curve terminates (see 
figure 8(e) )  at a certain R value; this is where Pc crosses beyond the bistable region: 

Unlike figures 7 (a)  and (b) which contain threshold-like behaviour, figures 6 (a) and 
(b) (for a = 0-01) do not appear to indicate the existence of the 0” threshold. One reason 
is that 0” is associated with the splay and bend elastic constants which are both higher 
than the twist constant; because of this reason 0” cannot develop sharply over the twist. 
The other reason is that this a value is not small enough. If we fix a even lower ( = 0.005) 
the Om, Cpm verses /3 curves for R= 1 and 1-5 show sharper variations as /3 crosses & 
(these diagrams have not been included). 

K,9~2Z+e[2k2Cp , .+ (2K2-K , )Cp~=-po~ ,H2  c0s2(/3-Cp)]=0; 

e(z= &h)=Q 

/JC <Po*  

3.5. Scaling analysis; efSect of varying elastic constants 
It is assumed that xa > 0 for the rest of the discussion. The sample thickness is one of 

the parameters which enters the picture. So far we have obtained all results for a given 
sample thickness. A question does often arise as to how results get affected when the 
sample thickness is changed [3]. In particular we want to find out how change in 
sample thickness can affect bistability width (w, or wa) when we have a type B variation 
of distortion. 

This is easily achieved by changing the variable from z to < = z /h  in equation (2.6). It 
is then found that h explicitly occurs only with H 2  in terms whose coefficients are 
proportional to xB h2H2 (we remember that the material is a nematic; for a cholesteric 
there occurs an additional term whose coefficient is k2h). It is clear that for a nematic the 
solutions of equations (2.6) and (2.8) will remain unaltered if the product ( H h )  remains 
unchanged when h is varied, i.e. if h-*ho; H-*H/a, where LT is a constant. Noting the 
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definition of the splay Freedericksz threshold (HF - h -  I) it is clear that for given 
material and boundary conditions from equation (2.8) the solutions of equation (2.6) 
will remain unaltered for the same reduced field R = H/HF for any sample thickness. 
Hence, all attributes of the solution such as the bistability width will also remain 
unchanged at fixed R provided that the anchoring is rigid. It must be borne in mind that 
changes in h will cause scaled changes in the total free energy of the sample provided 
that the lateral dimensions of the sample are kept fixed; i.e., if h-ha, then, F+F/a. Thus 
the curves of F versus magnetic tilt retain their shape, only the value of F will change. 
To give a specific example, let fi = 0.01. Then for a sample thickness of 20 pm the plots of 
8, and 4, versus a will be the same as the curves of figures 1 (a) and (b) for the three R 
values; the corresponding plots of F versus a will also be identical to those of figure 2 (a)  
except that the F axis scale has to be multiplied by a factor of ten. These conclusions are 
qualitatively identical to those arrived at for the single angle description [ 141: needless 
to say, an experimental check is possible. It must be remembered that the above scaling 
is specific to rigid anchoring at the boundaries; scaling will not hold for weak 
anchoring; scaling will also fail for a cholesteric. 

Changes in the values of the different elastic constants can affect the nature of the 
solution, especially the bistability width. In principle this should be done for various 
kinds of boundary conditions. For simplicity, however, a twisted nematic with 4o 
=0.39 is chosen. The elastic constant values are shown in the table. H is assumed to be 
sufficiently high (R = 1.5) so that bistability results in all cases. At given /? (= n/4), w, is 
found to increase with K , ;  w, diminishes when K ,  or K 3  is enhanced. A similar trend is 
found when a is held constant and wg is studied for different sets of elastic constants. 

4. Dynamics, generalizations and stability analysis 
4.1. Governing equations for jinite deformations 

So far the magnetic tilt has been assumed to change in small steps and consequently 
dissipative effects have been ignored. In a real situation transient effects should occur 
every time n changes due to the variation of magnetic tilt; in particular, when the 
magnetic tilt overshoots the edge of the bistable region the deformation change to a 
lower energy state will be accompanied by transient flow. In such a situation it is 
necessary to assume that 

n = (C,C,, C,S,, S,); 0 = 0(z, t); @ = @(z, t). (4.1) 

In this case, 0, @ can give rise to viscous stresses azx, aZy which, in turn, bring into 
existence a velocity field 

Incompressibility and the no-slip condition at the boundaries require that v cannot 
have a z component. In the most general case we get four coupled equations 
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Orientational bistability in nematics 467 

a superposed dot denotes the time derivative; a subscripted comma denotes a partial 
derivative; gzx, azy are components of the viscous stress tensor; p is the density; the pi are 
the viscosity coefficients of the nematic ; y1 =p3  - p 2  is the twist viscosity coefficient. 
The third component of the force equation which relates the z derivative of the 
hydrostatic pressure to elastic and viscous effects has been left out as it does not enter 
the picture. It is usual to ignore the inertial terms (proportional to p )  as they are 
generally unimportant for thin samples. The boundary conditions for n and v become 

Let us first consider a nematic ( k ,  = 0). The same procedure adopted in [14] can also 
be used here to put equations (4.3) and (4.4) into dimensionless form. To do this, 
equations (4.3) are divided by K,.  Now variables (=z /h ,  u= t / z  are employed where z 
=ylhZ/Kl is a characteristic time. The functions J i = f i / K ,  ( i=2 ,3 ,4 )  become 
dimensionless as they depend only on elastic ratios. The H terms in equation (4.3) can 
be written in terms of R. By defining the dimensionless viscous functions Gi = gi/yl ( i  = 1 
to 7) ,  and dimensionless velocities V, = v,z/h, V, = u,z/h, equations (4.3) and (4.4) can 
be rewritten as 

It can be seen that for given material and boundary conditions, the only free parameter 
is R. If R is also fixed, equation (4.6) will yield solutions @(& u)  and @(& u) which will be 
independent of sample thickness. It must be noted that z depends on h. 

Keeping in mind the results of scaling of the static equations (see section 3.5) the 
following conclusions can be reached. Suppose we perform a static experiment on two 
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sample thicknesses (2 hl,  2 h,) with the same high reduced field in both cases. We should 
get identical Om, &,curves (i.e. same bistability width w, or w,) in both cases. If we study 
the transition times near the edge of the bistability region we should get different results 
for the two cases. If TI, T2 are the transition times for the two samples the definition of z 
indicates that (Tl/T2)cc(hl/h2)2; the thinner the sample, the faster the transition should 
be. This can be put to experimental verification; it must be noted that this simple scaling 
will not be valid for cholesterics and for weakly anchored nematics. 

The governing equations (4.1) and (4.2) may be capable of explaining more general 
situations. So far we have assumed that a or fi are changed in small steps. This is 
equivalent to stating that the magnetic tilt is not a function of time. We can think of a 
situation where a (or 8) is a constant and f i=  R,t (or c1 =Rat); starting from t = 0, H from 
equation (2.2) is rotated at a constant uniform rate. From an experimental viewpoint 
this would be a generalization of the rotating field experiment discussed in [14]. As long 
as R, or R, is small enough, equations (4.1) and (4.2) may be able to describe the way 
the distortion changes in time. Considering complex features such as propagating 
waves discovered in certain rotating field experiments [20] it appears that when the 
rate of rotation is high it may be necessary to include the dependence of quantities on 
other spatial coordinates also; it may also be necessary to add a third component to u 
and to consider the third component of the force equation which has been ignored here. 

4.2. Stability analysis 
In principle, the transition which occurs at the edge of the bistable region should be 

studied by explicitly solving equations (4.3) and (4.4) with the boundary conditions 
from equation (4.5). This is a formidable task as it involves solving a set of coupled non- 
linear partial differential equations. In the simple one angle description a numerical 
solution of the problem has been presented [13] by ignoring flow coupling; 
interestingly, this agrees well with experimental observations. 

An alternative approach [14] is to study the stability of the static solution against 
time dependent perturbations and to find out whether the perturbations have a 
tendency to grow near the edges of the bistable region. While this approach cannot 
yield the actual transition time between the states it can still establish that an instability 
might set in. This has been accomplished in the simple case of twist geometry [14] 
where flow coupling does not exist in the framework of the assumptions made. It should 
be interesting to find out whether similar results can be obtained when coupling 
between orientation and flow fluctuations cannot be neglected. This is attempted below 
under the rigid anchoring hypothesis. 

Consider the static deformation from equation (2.3) under the action of H from 
equation (2.2) satisfying equations (2.6) and (2.8). Let small perturbations O", 4" be 
introduced so that the total deformation is represented by 

The time variation of O", 4'' will result in small time dependent stresses ozx, ozy which 
create a velocity perturbation of the form given in equation (4.2). Substituting into 
equations (4.3) and (4.4), using equations (2.6), (2.8) and (4.5) and linearizing with 
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Orientational bistability in nematics 469 

(en, qYr, ux, uy) (z  = & h, t )  = 0. (4.9) 
Obviously, equations (4.8) and (4.9) represent an eigenvalue problem. The first task is to 
get the static solution from equations (2.6) and (2.8) at given R, a, B. Then by 
substituting 

(en, 4rr, u,, v y ,  a, b) = [@XZ),~~Z), u,,(z), uy,(z), a ~ ,  b ~ l  exp (vt), (4.10) 

We can get solutions in closed form and also separate variables so that equations (4.8) 
become a system of ordinary differential equations to be solved with equation (4.9); 
instead of time dependence, v enters as a parameter. Solution of equations (4.8) and (4.9) 
yields a compatibility condition which is satisfied only by discrete values of v; out of 
these the highest is chosen. If v < 0 (or if v > 0) the static solution is stable (or unstable). 

When a = O  and 8, = O  (homogeneous ground state) the variation of B causes H to 
rotate in the xy  plane. In this case 8(z) = 0 and the static distortion is a pure twist. We get 
the results which have already been dealt with (see figure 8 of [ 141). For the remaining 
cases it seems advisable to split the discussion into two separate parts. 

4.2.1. Transient splay-bend 
Let B =O so that as a is varied H rotates in the xz plane. Let there be no superposed 

twist on the sample: (bo =O; then, &z)=O. The static solution is given by equation (2.8) 
and 

f2(e)e, 22 +t(df2/d9)92,z  - af 4/89 = 0. (4.1 1) 

(4.12) 

02, = 91(& O)O,, 2 + 93@, 0)‘ = 40. 
Having obtained O(z) at given R and a from equations (4.11) and (2.8), the ansatz 
(en, u, a )  = [el’(z), uxA(z), a,] exp (v,t) is used to calculate the highest eigenvalue vsl from 
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equations (4.12) and (4.9). For 8, = 8,, this corresponds to the mode (for example mode 
1) in which fli is symmetric and vXA antisymmetric with respect to the sample centre 
(this symmetry is lost when the director pretilt is more general). 

The material parameters are selected from [28] 

(4.13) 
(Kl, K2,K3)=(6*41, 3.97,9.23) x 10-I2N; 

(p1,p2,p3,p4,p5,p~)=(0.0, -0.0941, -0*0045,0.0824,0.0569, -0.0417) Pas. 

As p1 is generally small its value is taken as zero. The values of the pi are so chosen as to 
satisfy the Parodi relation [4]. 

Figure 9 (a) contains plots of vsl versus a for Ok = n/2 (homeotropic anchoring at the 
boundaries) and three values of R. The corresponding 8, curves are formally identical 

-0: 

vs2 

-0.9 

0.0 

/ \  

VG 

-0.05 
1 0.0 U 3.0 0.0 3.0 

-1.5 U 1.5 0.0 U 3.0 

Figure 9. Plots of maximum growth rate (v) of time dependent linear perturbations versus 
magnetic tilt angle at different R. Static distortions of types A, B, C are represented. 
Material parameters are those of equation (4.13) [28]. (a) and (b) O* = x / 2 ;  homeotropic 
anchoring at the boundaries. p=O.  H rotates in the xz plane when GI is varied. &z)=O; 
single angle description. The static deformation is splay-bend O(z). R = H / H ,  where 
H ,  = (n/2h) (K3/pox,)1’2 is the bend Freedericksz threshold. Coupling exists between the 
orientational perturbation 8” and the velocity perturbation u,. (a) Mode 1; 8” is even, u, is 
odd with respect to the sample centre; vsl versus GI. (b) Mode 2; 8” is odd, ux, is even with 
respect to the sample centre; vsz versus GI. R =(1) 0 5  (2) 1.0 (3) 1.25. It is sufficient to study 
mode 1 which always grows faster than mode 2. The vsl curves bear strong resemblance to 
the F curves of figure 2(a) (see $4.2.1). (cHf) The static distortion is a combination of 
splay, twist and bend - O(z), 4(z). The perturbations are 8”,4”, vx,  vy .  R = H / H E ,  where HE 
is the splay Freedericksz threshold. O* = O  (homogeneous ground state); & = O  (no 
imposed twist). (c) and (d) vG versus GI for p =(c)  0.39 (d) 1.17. In (c), R = (1) 0 5  (2) 1.0 (3) 1.5. 
In(d),R=(l) 1.0(2) 1.2(3) 1.5.(e)and(f)vGversusflfora=(e)O.05(f) 1.36.In(e), R=(l) 
0.5 (2) 1.0 (3) 15. In (f), R = (1) 1.0 (2) 1.2 (3) 1.5. It is seen that type A and type C distortions 
are stable over the entire range of magnetic tilt. The type B static deformation shows a 
propensity towards instability as the magnetic tilt approaches the edges of the bistability 
region. Observe the shape similarity between the vG curves and the F curves of figure 2 (see 
54.2.2); see also [14]. 
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Orientational bistability in nematics 47 1 

to those of figure 1 (a). At R = 0-5 (curve l), vsl remains negative showing that O(z) is 
stable throughout the a range. When R = 1.25 (curves 3), vsl increases from a negative 
value as c1 is varied from the limits of its range; vsl+O as a approaches the edges of the 
bistable region where the static solution has a propensity to undergo instability. 
Interestingly, for R = 1.0 (curve 2) the variation of vsl is sharp at a = 0 and vsl is also 
close to zero. Hence we cannot rule out a small jump in the distortion as a crosses the 
middle of the range. There also exists a similarity between the F and vsl curves 
(compare with figure 2). 

It is possible to investigate the other uncoupled mode (mode 2) which has symmetry 
opposite to that of mode 1. Figure 9 (b) contains a plot of the inverse rise time vs2 as a 
function of a; clearly, mode 2 is of no interest as it always damps out faster than mode 1. 

4.2.2. General transient dynamics 
Suppose the tilt of H is changed in a general way. Then the static distortion O(z), 4(z) 

is given by equations (2.6) and (2.8). To solve equations (4.8) and (4.9) for the 
perturbations, we use the ansatz from equation (4.10) to solve for the velocity gradients: 

Obviously, the Li and A are functions of O(z) and $(z). Integrating the velocity gradients 
with respect to z and using the boundary conditions from equation (4.9) expressions can 
be obtained connecting the indeterminate stress amplitudes a,, b, implicitly in terms of 
the perturbations B”, 4”; 

(4.15) 

all integrals in these equations are from z = - h to z = + h. It is worth noting that the 
integrals Pi are dependent only on the static solution. By substituting for aA, b ,  from 
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472 U. D. Kini 

equation (4.15) into equations (4.14) and (4.8) a pair of integro-differential equations are 
obtained for @’, 4; to be solved with equation (4.9): 

(4.16) 

By using the orthogonal collocation method in tandem with the gaussian quadrature 
integration formula, these equations can be translated into a set of coupled linear 
equations whose compatibility condition can be used to obtain the highest eigenvalue 
vG of v for different magnetic tilt angles and reduced field (see figures 9 (cHf)). 

The following features may be noted. When R is low enough, the static solution is 
stable for all magnetic tilts. When R is high and the static distortion shows type C 
behaviour, vG c 0 for all magnetic tilts. The static solution shows a tendency towards 
destabilization (vG+0) as the magnetic tilt approaches the edges of the region of 
bistability when the distortion conforms to type B variation. The shape similarities 
between the vG curves and the corresponding F curves (see figures 2(uHd))  can be 
noted. 

5. Conclusions 
An attempt has been made to generalize the theoretical work of [ll-141 to study 

the nature of change of deformation with magnetic tilt angle when n is described to two 
angles. Quite a few of the predictions can be put to experimental test. The results for 
zA > 0 become similar to those of [ll-141 when H rotates in a plane which is either close 
to the sample boundaries (awO) or normal to them ( P = O )  with n being initially 
uniformly aligned in the magnetic plane; in this case the distortion shows either type A 
(continuous variation with magnetic tilt without bistability) or type B (bistability 
associated with discontinuous variation at the edges of the bistable region) behaviour. 
When the magnetic plane is sufficiently tilted with respect to the sample boundaries a 
new kind of variation (type C) is found when the field is strong enough; the deformation 
changes continuously over the entire range of magnetic tilt with bistability. It is 
possible to account for these results in terms of energy flow between the splay-bend and 
the twist modes of distortion. 

Even for general orientations of H, the deformation changes symmetrically when 
the magnetic tilt is varied from the two ends of its range for the homogeneous ground 
state. When the ground state is uniformly pretilted it is found that the distortion 
changes by different extents for the two different variations of magnetic tilt. This 
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appears to be due to the different ways in which twist can couple with splay-bend near 
the two ends of the magnetic tilt when the ground state has a uniform pretilt. 

The viewpoint adopted in [14] has been extended to the present case to study the 
stability of the static deformation against time dependent perturbations; only the 
homogeneous untwisted ground state is considered. It is found that type A and type C 
solutions are stable over the entire range of magnetic tilt; the type B solution shows a 
propensity towards instability as the magnetic tilt approaches the edges of the bistable 
region. It should be instructive to extend this study to more general cases such as the 
uniformly pretilted ground state. 

Scaling analysis of the static equations shows that when anchoring is rigid the 
bistability width (relevant to type B variation of deformation) for a given nematic 
should be independent of the sample thickness at a fixed reduced field; this scaling, 
which breaks down for a nematic when the anchoring is not rigid, does not also exist for 
a cholesteric. Scaling analysis of the dynamical equations shows that the time of 
transition should strongly depend on the sample thickness at the same reduced field- 
the thinner the sample, the faster the transition. The importance of adjusting the 
transition time by changing sample thickness becomes clear when we discuss certain 
other ramifications of the dynamical effect later in this section. 

The case of a xa < 0 nematic has been briefly treated. For the homogeneous ground 
state a striking qualitative difference can be observed between this case and that of the 
xa >O nematic. For the xa < 0 case, type B behaviour is found only for f i  variation at a 
given a; type C behaviour does not seem to exist. For the a variation (at fixed f i )  one 
finds only type A behaviour. When the magnetic plane is normal to the sample 
boundaries and also contains the splay-bend deformation ( f i= 0) there appears to be a 
threshold polar angle a,; when a is varied beyond a, an additional twist component can 
appear when His high enough. It is possible to estimate a, by linear (time independent) 
perturbation analysis. Similarly one can find a threshold for transition from the twist 
via splay-bend perturbations when n and H are initially confined to the same plane 
parallel to the sample boundaries. This brief foray indicates that a more detailed study 
of the x a < O  case should be worthwhile. 

As long as the ground state is uniformly tilted the distortion at any H for any 
magnetic tilt will be symmetric with respect to the sample centre. This is not true when 
the ground state has an imposed twist; the deformation becomes asymmetric. In spite of 
this the nature of variation of the distortion for a given ground state twist turns out to 
be similar to that of the untwisted case. To show this results have been briefly presented 
for twisted nematics with different ground state twists. It is possible to obtain ground 
states with different twists by using chiral impurities [S]. With an additional pretilt it 
seems possible to get super twisted structures [25]. It appears reasonable to postpone a 
detailed study of these cases to the future with particular reference to a comparison with 
the simple twisted case. In particular, it should be instructive to find out how the nature 
of variation of distortion is affected when the material has x a < O .  

The case of a cholesteric has been mentioned in passing mainly to show additional 
complications that may arise. When the ground state pitch is sufficiently small a 
homogeneous distortion may not be energetically feasible for certain tilts of H, we can 
expect periodic deformations [29]. It should be interesting to investigate the nature of 
variation of deformation for different pitches. From the experimental viewpoint it 
should be possible to find out whether periodic and non-periodic (homogeneous) 
distortions occur in different ranges of magnetic tilt angles. Even when the deformation 
is homogeneous the intrinsic twist of the cholesteric can be expected to affect the range 
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and occurrence of bistability. Due to the additional intrinsic twist term in the free 
energy density, the distortion will also be asymmetrical for most values of the magnetic 
tilt angles. 

In the case of the single angle description [14] it has been shown that the very 
occurrence of bistability can be controlled by the application of an additional E along 
different directions; for type B variation in particular the bistability width can be 
influenced by E. Naturally factors such as the sign of the dielectric anisotropy 6 ,  and the 
boundary conditions are important in determining how much the electric field inside 
the sample gets influenced by the distortion. It has not been possible to take account of 
E in the present communication; however some qualitative features of the effect of E 
can be discussed. For a nematic with t, > 0, E applied normal to the sample boundaries 
reduces the magnetic splay Freedericksz threshold; this should increase R at a given 
value of H. But when the ground state is homeotropic E can actually enhance the bend 
magnetic Freedericksz threshold. Hence E can have a stabilizing or a destabilizing 
influence depending upon the initial pretilt of the ground state. 

It has been shown [30] that the effect of E applied parallel to the sample planes can 
be quite complicated especially because the peculiar nature of its modification by the 
presence of distortions leads to a discontinuous electric bend Freedericksz transition. 
In the present context of general director deformations E, applied along the sample 
boundaries, assumes special importance because it can be impressed along various 
directions. The effects of an additional electric field will be treated elsewhere. 

Finally mention must be made of possible generalizations of the static limit to 
include dynamic effects. One of the simplest in this category is the rotating magnetic 
field. As noted earlier [16-20] a variety of interesting results have been found when a 
nematic sample is subjected to a rotating H. In an earlier communication [14] it had 
been indicated that a rotating field (or sample) experiment should serve as the 
dynamical analogue of the static experiments already reported in [ll, 131 on director 
deformations described by a single degree of freedom. It may be worth elaborating this 
a little in the light of results obtained here. As the scaling analysis makes it clear, the 
time of transition at the edge of the bistable region should strongly depend on the 
sample thickness. By adjusting the sample thickness it may be possible to make this 
time coincide with the rotation period; this might lead to the observation of resonance. 
Theoretical results of this work make it clear that generalizations of such experiments 
to include variations in the axis of rotation of field (or sample) should prove fruitful. 

The author thanks a referee for useful comments on an earlier version of this work. 
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